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SUMMARY %38/\(

The effect of a radiant gas on the characteristics of
hypersonic flow past a cone is investigated by the "boundary layer"
method developed by Freeman, Chernyy, Lvubimov and others. The pro-
blem is reduced to a nonlinear intersral eguation for gas enthalpy,
obtained in the extreme case of the flow,and the method for its solu-

tion ir indicated. This solution z2llows to determine the shock wave

curvature at thke leading edge of a cone. CW

There are many problems linked with the motion of bodies in
a gas at high supersonic velocity where it is indispensable to take
into account the influence of radiation heat exchange between gas
particles on the parameters of the flow. The problem of hypersonic
gas flow past a wedge, taking into account heat emission, was studied
in the work [1], in which the author, assuming the smallness of radia-
tion effect upon the flow cheracteristics, sought the solution of the
problem set up in the form of series by powers of the small parameter
characterizing the radiztion. The question of radiation effect on flow
parsmreters in the boundary and shock layers, and alsp on heat exchange
in the vicinity of the criticel point of a blunt body was resolved by
&n analogous method in the works [2]1, [3], [4] and [5].

® OBTERANIYE KONUSA GIPERZVUKOVYM POTCKOM NEVYAZKOGO ISLUCHAYUSHCHEGO
GAZA. '




*.

n the present work the problem of hypersonic flow past a cone
by a nonviscous radiant gas is considered. For its solution the method
of "boundary layer', developed in the works [6], [?7] and [8], has been
applied. In the extreme case of flow a nonlinear integral eguation was
obtained for the determination of enthalpy, and the method for its solu-

tion is indicated.

1. - PROELEM'S EQUATIONS AND THEIR SOLUTION

Ve shall consider the supersonic flow past a straight circular
cone of 2 gas. At high incident flow velocities the gas, situated in the
rerion between the surface of the body and the shock wave, is heated to
a temperature of the order of several thousand dezrees. At such tempera-
tures the radiation heat exchange between gas particles exerts a substan-
tial effect on the parameters of the flow. For the solution of the problem
set up one must in this case resort to a complete system of hydrodynamic
equations, taking into account the radiant field [9]1, [10]. Generaliy
speaking, such equations include the terms characterizing the density of
radial energy and the radiation pressure. At gas temperature significantly
below 300000° K, the indicated terms are quite small, and they can be
nezlected wittout impairing the high degree of precision . The radiation
of heated gas will exert also influence upon the parameters of the ijinci-
dent flow at the expense of absorption by the gas, heated in the shock
layer, However, tzking into account that the cold atmosphere is practical-
ly treansparent for those frecuenclies, in which the bulk of energy is emit-
ted by the gas heated in the shock layer to temperatures of several thou-
sand degrees, the indicated effect can be neglected and one may approxi-
mately estimate, that the gas parameters ahead of the shock wave front

are the same as at infinity.

With the above assumptions, and taking into account the radiant
field, the totzl system of equations of gas dynamics, written in dimen-
sionless form, will take the form [9]:
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where o is the half-aperture angle of the cone; x and y are the coordi-
nates referred to a certain charecteristic dimension L, with x being
counted along the cone's generatrix and y — along the normal to it; u and
v are the velocity vector components, reszectively along the axes x and y,
referred to the velocity of the incident .flow Vo, f is the density of the
gas, referred to that of the gc:s in incident flow f :p is the pressure

in the flow, referred tOf V° ;1 is the enthalpy, referred to V°2, qQ is
the rate of heat inflow at the evpense of radiation to the unit of gas mass;
Jyl, is the emission intensity of the frequency V¥, propagating in the direc-

tion [ 3§ @ is the mass absorption coefficient; By is a Plank function.

The quantities Jy; and By are referred to ~B,=-{—Tf_, and gq,a,
— to0 4mm,B,, &, respectively, where Tl is the characteristic temperature;
al is the characteristic absorption coefficient.

Besides, it is here postulated

41‘&18] L .

Eo = Vo

1
o = "GhaiL
For the solution of the problem set up, we shall take advantage
of the "boundary layer" method, developed in a series of works [6],[7] and
[8]. At the same time, we shall limit ourselves in the present work to

finding only the limit solution, that is, we shall seek the solution in the




We shall introduce the new independent variables

4

1 2

2

X and 2z =

'

where ¥ is the current function, determined by the eguations

o= —prv, Yy=pri
and the existence of which is assured by the continuity equation, Then,
as is not difficult to see, we shall have at the surface of the cone
z =0, at the shock wave front 2z =1, and in variables (x, z) the region
of flow between the shock wave and the cone surface will have the shape

of a semi~-infinite rectangular band.

The transition formulas to new varisbles mar be writtem in the form

9 u—axz 9
F=2 =2, (12)

a=cosa, b=—sina.
For the determinztion of y we have the following eguation

dy r
2—07— u—atz °
In the new variables (x, z) and in the extreme case, the energy

conservation equations and the radial transfer equations will taske the form

al 0i
rug——2buz 57 =g,

(1,3)

a7,
0z +Jvl=Bv, r=bx.

—2—?—' cos (I,Ay)r =
In the extreme case the quantities u, \_/, P, y are determined by
the equalities
u=cosa, p=sin®a, y=0, 0=0.
Let us write out the boundary conditions for the system of equa-
tions (1.3): |

a) we shall estimate that the cone surface temperature is given
and constant
T =Ty =const.




Then, in the assumption that the cone emits as an absolute blackbody, we
shall have
Ji=Be(Tw) 0<0<5, (1,4)

where © is the angle between the directions [/ and that of the axis y.
The boundary condition on the surface of a nonblack cone, repla-
cing (1.4), will be obtained below.

b) Shock wave front : z=1, In the extreme case we have

i=-;— sin*a=N,. | (1,5

If we neglect the emission from the incident flow, the correlation
Ju=0 5 <b<=
where J;; — the intensity of the entering radiation, will be valid at
the shock wave front.
It is easy to see that the first equation of the system (1.3)
with the boundary condition (1.5), is equivalent to the following:

i=Ny+2x j q(XC- %‘)“ (1,6)
Vi

Integrating the equation for the radial transfer, we shall arrive at the

- expressions

By
Jv’.:e-H“‘.(Bv'-,'secoj Bvehm'dl"v) 0 o<_;-:
R

Py
J.7=sec0e-'-"m~s B 'dp, <0<y, (1.
t . :
e -
B, = -ga-xbfa‘dz, B, = tzg': X Sl‘dZ.
o

Substituting (1.7) into the expression for q, we shall obtain:

‘(x' z)=No+E,xj q(xc' %)d:,
72
oo'/oo
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2 ) 4
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Here it is postulated
+ o i
En= (S dt, E= j ¢ dt

It is easy to demonstrate, that for the functions E; (x) and E, (x) the
expressions

Ex(x)=—lnx—C---E(-— 0
K1

— O . Xk
E,(x)--l+xlnx+(C—l)x+Z(——1)"1m,
A=2
where C is the Eiler constant, are valid.
Taking into account the form of reprerentations for the functions

Ey (x) and Ep (x), we shall seek the solution of (1.8) in the vicinity of
the voint x = 0 in the form:

o k-1
i=a,+ 2 ( Z Ay (2) In™ x)-x*

R==1 \ m=0

L k~-1
B, =b8 + }_: ( 2 b5 (2) In® ) (1,9)

k=1

o, =p{" + 2(2 Bim (2) In= x ) xk.

k=1

The coefficients a are determined at the substitution of the
the expressions (1.,9) into the equation (1,8). For the first four coeffi-

cients we obtain the following expressions:

Qg = /Ng=const,

Ge=—7k [ fﬁé"' (B — 2b8")dv](1 ~V32),

+ + =
a,,=_-_;-ns,{2(1—z) bf B0 dv+-zin 2 | Bé"'B-dv}.
1]

.0/0'
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2. - SETTING UP THE PROBLEM OF HYPERSONIC RADIANT GAS
FLOW PAST A NONBLACK CONE

Let us introduce in the vicinity of a certain point M, lying on |
the surface of the cone, a local spherical system of coordinates (e, 0)
(Fig.1). Assume that a monochromatic radiation of frequency V; , propaga-
ting in the direction ll’ and whose intensity is J,'lt s is incident upon
the surface of the cone. If we denote by ty, the coefficient of blackness
of cone's surface for t'e monoc:iromatic radiation of frequency 4R the
cuantity (1—e,) /i, will deternine the aggregate intensity of the reflect-
ed radiation. At the same time, its intensity in the frequency v and in

the propagation direction [ will be deitermined by the expression

1",".(1 —e) .



The thus introduced function Y,u, will be called reflection indicatrix.

From the determination of Y, u1stems the normslizstion condition for the
A _

reflection indicatrix

+w
‘S dv (S;‘ s; T d2=1.

It is now easy to obtain the bouncary condition on the surface
of a nonblack cone, replacing (1.4); it has the form

+ -

Ti=eBa+ | v ([ (1—e)1,, Jud2. 2,1)
O+ ) ,

In tLis exvrecsion the first addend determines the intensity of cone sur-
face's natural emisrion, and the second defines the intensity of reflected
radiation.

The form of the functlonyg%a'is determi-
ned by the properties of surface material and of
the surrounding medium, We shall subsequently

assume that Y,, i, hes the form

- —_—
] yy‘u' - 2".(0”'.

where X, is the irequency reflection indicatrix; Fige.1
w,, is the angular reflection indicatrix.
Let us consider two exireme cases :
l.- Specular reflection, when
o, =6 (9 —9) 8 [0, — (—0)],
where 8(p;—¢9), 00, ~(x—0)] are Lirak functions, such that
[§3(e— 91810, —(x —0)} a0, =1.
(2) ]
In this case (2,1) will take the form
+ o
Ji=tBe+ | (1 -e.)1adidy, @2
0
2.- The surface of the cone scatters the incident radiation identically
in all directions (diffusive reflection).- Then w”t==i%’ and
+ o
1 .
fimeBut g | —e)ay [[s5ae, (g

o (2=)



For X,, the correlation
+ "

[ amdv=1.
1]
is valid in both cases., If we assume that the reflection from the cone

surface takes place with no frequency variation, then

2y, =8 (v; — v),
‘,ji (?9 O)ZE'B'.-I-(I _e")J'—Il(?: ® —o)v (2,28)
+ N V-—e, -
5 (0 =68+ ([ i, 2.3)
(2%)

Subsequently, for the simplification oi operations, the boundary condition
on cone surface will be written in the form (2.2a) or (2.3 a).

Integrating the radizl transfer equation, taking into account (2.2a)
or (2.3a), and substituting the result obtzined into the expression for gq,
we shall have :

-~ for the specular reflection

q=7‘- Sa.dv{é.B,.E,(p,)—l—(l—-%)J B.E, (¢t +w)dt +

y

~ for tine diffusive reflection

4=, ry
9=+ | a,dv{wof.w.)wuu—e.>E,<p;) { BE@WAt+
v o 0

By fty ‘
+§ B.E, (v, —t)dt + | B, (t—p,)dt_.gg,} (2,5)

Analogous expressions for the case of difiusive reflection are
brought up in [11].

The equality (1.6) presents in conjunction with (2.4) or (2.5)
the integral equation for the determination of enthalpy. The solution of
the equations obtained may be sought for anew in the form (1.9). For the
coefficients of expansions we shall have expressions, analogous to (1.10),
which we shall omit here on account of the cumbersomeness.

As an example, illustrating the influence of radiation upon the

gas parameters in the shock layer, we shall consider the motion of a
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* - s » - == _— —et LY L) -« n s - -—0
right circular cone with a hslfi-aperture angle & = 35"

atmosphere at 25kmaltitude and with A -

AS .

in the terrestrisai

a Mach number M = 30. The computa- ;
tion was conducted with the utili- 0,00 !
zation of the air absorption factor /
and of tke degrre of body surface o :
blackness €, averaged by frequency. 006 '
At the same time, it was assumed | ‘

that the averaged absorption factor .l;asl

of the gas is not dependent on tempe- : 5

rature.

Plotted in Fig., 2 are the

8 5 %

graphs of the function A= A(x), / 7
where A is a quantity, characteri- //

g

zing the influence of radiation on

the gas enthalpy in body surface's‘

o W 4@ am eN 4 ¥
EFic - 1—e=0; 2—e¢=05 T, =0;

)..___f_{_o—lo(&o) 3—e=1, T-=0; 4—¢‘=U,5, T.=l;
3 ’ S—e=1, Ty=1

abutment area :

x=hx,

E . 8‘8!
2T oVt sina

We have chosen for the characteristic temperature Tl the gas
temperature at X = 0. In the case uncer consideration Tl =6200°K.
The dependences here constructed are valid in a small neighborhood of
the nose cone, for which the terms of the order of x'In*x and higher

are neglectingly smell by comparison with X.

3. - SHOCK VIAVE CURVATURE AT FORVYARD POINT OF THE
NCSE CONE

The equation (1.2) is available for the determination of y.

Let us apvly to it the method of consecutive avproximations.
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We shall tske for tie zero an-roximstion tie solution
U=uny==cosa; p=p =sin*a;: r=ry=2xsinz; T=T,
The quantity Ty will be determined from the ecuation of state =% (i,, P,).

Then, we sihall obtain for y in the first apiroximation

i z
yl=-§—xtgas‘ l-:'t.l dz'

The shape of the shock wave is determined by the equality
1
- 1 %o
0
Expanding the subintegral expression into series by powers

e x {k=0, L2..., }

m=0,1,2, ..., R—1

. and integrating termwise, we shall find

1 1
y,:-_-—z-tgl{—xlnll —T.l+mm [E;f’iln

%l;-ﬂﬂw(ﬁmn} .

70 =% (a.v Po),

. +o»
1 v \J
= | o] len—2i1a).
falty 0 .
Hence K, which is the curvature of the shock wave in the leading edge,

can be easily determined as follows :

RENNRE L% S
R 1=y ] W

[+ wemin—w]

K=u,tga (3,1)

At 7oK1 s which takes place at suificient hisgh incident flow velocity,

" (3.1) takes the forn

K=evtga[z+gnto(d] @2

It follows fronm (3.2) that the sign of the siock wave front curvature

coincides with that of the cuantity wlo. From here, the shock wave

is convex upward if T,<}‘/§T!,'(0,-0), and concave upward if T.>}‘/§T.(0, 0),
where TOY(O, 0) is the temperazture of gas at nose cone front.
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It foilows from iie above-expounded considerations, that the
radiaztion of a heated gas in the recion between the shock wave and tre
surface of the cone exerts first of all an influence on thé temperature,
heat content and density of the gas. The shock wave is distorted, and, at
the same time, the direction of convexity in its leading edge depends on
the correlations between the cone surface teu.perature and the gas tempe-
rature at the advanced point of the nose cone. '

Note, that the results obtained can be easily extended to the

case of hypersonic flow of radiant gas past an arbitrasry peaked body of
revolution. '

The author extends his sincere thanks to A, A. Gridb for valuable
directives and his useful counsel.
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